THE CONFIGURATION AT THE ANOMERIC CARBON OF THE ETHYNYLATED

PRODUCTS OF 2,3,5-TRI-O-BENZOYL-D-RIBOFURANOSYL BROMIDE

WITH MERCURIC AND CUPROUS PHENYLETHYNYLIDES

Kiichi ARAKAWA, * Tadashi MIYASAKA, and Norimitsu HAMAMICHI School of Pharmaceutical Sciences, Showa University

1-5-8, Shinagawa-ku, Tokyo 142

The substituent at the anomeric carbon of the major product of the ethynylation, one of the 1-phenyl-2-(2,3,5-tri-0-benzoyl-D-ribofuranosyl)-ethynes, have chemically been proved to be β -oriented. In the NMR spectra of 2,3-isopropylidene-ribofuranose derivatives the coupling constant of C_1 -H has been observed to be approximately 4 Hz in the 1- α -substituted anomers and almost negligible in the 1- β -substituted anomers.

In the recent report on the synthesis of 3-pheny1-4-(1- β - and 1- α -D-ribofuranosy1)pyrazoles (1) and (2), a new type of C-nucleosides, ¹⁾ the configuration at the anomeric carbon of the former has tentatively been assigned as β on the basis of the general rule of the predominant formation of the β -anomer by substitution of tri-O-benzoylribofuranosylbromide (3) through heavy metal process. ^{2),3)} Treatment of (3) with cuprous phenylethynylide has given the ketal (4) [32% yield] and a small amount of 1-phenylethynylated product, the latter being identical with the major product (5) [amorphous solid; $\left[\alpha\right]_D^{20}$ -60.5° (c = 0.61 in CHCl₃); NMR δ (ppm in CDCl₃): 5.19 (1H, d, $J_{1,2}$ = 2.2 Hz, C_1 -H)]which was obtained on reaction of (3) with mercuric phenylethynylide together with a small amount of the anomer (6) [m.p. 89-91°; $\left[\alpha\right]_D^{22}$ +87.9° (c = 0.67 in CHCl₃)]. The addition of diazomethane on (5), followed by debenzoylation has furnished (1) [m.p. 92-93°] and the same procedure on the minor C_1 -ethynylated product (6) has furnished the corresponding α -anomer (2) [m.p. 103-105°]. ¹⁾

The amorphous solid (5) was oxidized with potassium permanganate in acetic acid at 40° to give carboxylic acid (9a) [20% yield; amorphous solid; $[\alpha]_D^{22}$ +39.7° (c = 0.67 in CHCl₃); UV $\lambda_{\text{max}}^{\text{EtQH}}$ nm (loge): 230 (4.36), 275 (3.37); IR $\nu_{\text{max}}^{\text{CHCl}_3}$ (cm⁻¹): 1721 (C=O), 1270, 1120, 1105, 1094]. Methylation of (9a) with diazomethane in ether gave colorless solid (9b) [theoretical yield; $[\alpha]_D^{19}$ +18.1° (c = 1.63 in CHCl₃); NMR δ (ppm in CDC1₃): 3.78 (3H, s, -CO₂CH₃), 4.73 (3H, m, C₅-H, C₆-H₂), 4.84 (1H, d, $J_{2.3}$ = 4.0 Hz, C_2 -H), 5.79 (1H, m, C_4 -H), 5.98 (1H, dd, $J_{2.3}$ = 4.0 Hz, $J_{3.4}$ = 5.2 Hz, C_3 -H), 7.22-8.24 (15H,m, aromatic)]. Oxidation of the anomer (6) in the same manner afforded carboxylic acid (10) [20% yield; amorphous solid; $\left[\alpha\right]_D^{19}$ -494.6° (c = 1.86 in CHC1₃); UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (loge): 230 (4.36), 275 (3.37); IR $\nu_{\text{max}}^{\text{CHC1}}$ (cm⁻¹): 1720 (C=O), 1270, 1110, 1095]. The carboxylic acid (9a) and the ester (9b) were completely identical with the specimens prepared according to Bobeck's procedure from 2,3,5-tri-O-benzoy1- β -D-ribofuranosy1 cyanide, ²⁾ which had been proved to be β -oriented in relationship with the natural oxoformycin. (2),4),5) This fact offers unambiguous proof on the configuration at the anomeric carbon of the ribofuranosylethyne (5), and consequently of the C-nucleoside (1).

BzOCH₂

$$0 \longrightarrow R$$

$$BzO \cap OBz$$

$$(5) R = -C \equiv C - Ph$$

$$(7) R = \longrightarrow NH$$

$$Ph$$

$$(9a) R = -CO_2H$$

$$(9b) R = -CO_2CH_3$$

$$0 \longrightarrow R$$

$$BzOCH2
$$0 \longrightarrow R$$

$$0 \cap R$$

$$0 \cap$$$$

 β - and α -Ribofuranosylethynes (5) and (6) were, then, debenzoylated with ammonia to triols (11) [amorphous solid] and (12) [m.p. 92-93°], which were treated with acetone in the presence of p-toluenesulfonic acid to 2,3-acetonides (13) [m.p. 67-69°; IR $v_{\text{max}}^{\text{CHC1}}_{3}$ (cm⁻¹): 1380, 1370] and (14) [m.p. 104-106°; IR $v_{\text{max}}^{\text{CHC1}}_{3}$ (cm^{-1}) : 1380, 1370], respectively. These were converted into the monoacetates (15) and (16) and to the monobenzoates (17) and (18), which were hydrogenated into the C_1 -phenethyl derivatives (19) and (20), respectively. The TABLE I summarizes the NMR data of the β - and α -anomeric 2,3-isopropylidene derivatives.

TABLE I. NMR Spectral Data of 2,3-Isopropylidene Derivatives (13) - (20).

Com	pou		s R ²	Chemica1 Shifts of C ₁ -H (ppm)	J _{1,2} Values (Hz)	Chemical Shifts of CCCH3 (ppm)	Values of
R ¹ OCH ₂ O R ² H OCH ₃ CH ₃	(15)	Ac Bz	-C≡C-Ph -C≡C-Ph -C≡C-Ph -CH ₂ CH ₂ Ph	4.80-4.99 4.77 4.87 3.97		1.32, 1.50 1.35, 1.52 1.37, 1.55 1.33, 1.52	0.18
R ¹ OCH ₂ O H O O H ₃ C CH ₃	(14) (16) (18) (20)	Ac Bz	-C≡C-Ph -C≡C-Ph -C≡C-Ph -CH ₂ CH ₂ Ph	5.01 4.81 5.07 3.87	4.1 4.4 4.1 3.6	1.33, 1.55 1.34, 1.55 1.39, 1.62 1.33, 1.50	0.21

*) Obscured by overlapping with the signals of C_2 -H and C_3 -H.

Ph = $-C_6$ H₅, Ac = CH₃CO-, Bz = C_6 H₅CO-.

$$Ph = -C_6H_5$$
, $Ac = CH_3CO-$, $Bz = C_6H_5CO-$.

In connection with the determination of the configuration at the anomeric carbon of 1-C-substituted riboses by NMR spectroscopy, Maehr and co-workers have recently reported on the empirical study concerning to the coupling constants of the vicinal protons on a rigidly condensed bicyclic system with a five-membered ring of 2,3-acetone ketal. 7 ,8),9),10) The TABLE I shows that the C-1 proton was split into a doublet ($J_{1,2} = \underline{ca}$. 4 Hz) by the vicinal proton at C_2 in the α -substituted ribose derivatives (14), (16), (18) and (20), on the other hand, the coupling of the C_1 -H with the C_2 -H in the β -substituted derivatives (15) and (17) was negligible. With respect to the chemical shift differences ($\Delta \delta$ -value) of the two methyl groups at the isopropylidene moiety of the both anomers Igolen and coworkers observed a smaller difference for the α -anomers of some C-nucleosides. 9 , 10 ,11) As shown in the TABLE I $\Delta \delta$ -values of the two methyl groups were 0.18-0.19 ppm for the β -anomers and 0.21-0.23 ppm for the α -anomers and these values were not large enough to be useful to identify the both anomers. The discrepancy between the values in C-nucleosides and the ethynylated compounds seems to be likely the results of the reverse anisotropic effects of the pi-systems of heteroaromatic group and those of the acetylenic linkage.

REFERENCES

- 1) K. Arakawa, T. Miyasaka, and N. Hamamichi, Chem. Lett., 1305 (1974).
- 2) M. Bobeck and J. Farkaš, Coll. Czech. Chem. Commun. 34, 247 (1969).
- 3) G. T. Rogers and T. L. V. Ulbricht, Tetrahedron Lett., 1025 (1968) and loc.cit.
- 4) M. Bobeck, J. Farkas, and F. Sorm, Ibid., 4611 (1970).
- 5) J. A. Montgomery and K. Hewson, J. Heterocycl. Chem., 7, 443 (1970).
- 6) See also H. S. El Khadem and T. D. Audichya, J. Med. Chem., 18, 438 (1975).
- 7) H. Maehr, T. H. Williams, M. Leach, and A. Stempel, <u>Helv. Chim. Acta</u>, <u>57</u>, 212 (1974).
- 8) See also K. J. Ryan, H. Arzoumanian, E. M. Acton, and L. Goodman, <u>J. Am. Chem.</u>
 Soc., <u>86</u>, 2503 (1964).
- 9) T. Huynh-Dinh, A. Kolb, C. Gouyette, and J. Igolen, \underline{J} . Heterocycl. Chem., $\underline{\underline{1}}\underline{\underline{2}}$, 111 (1975).
- 10) F. G. DeLas Heras, C. K. Chu, S. Y.-K. Tam, R. S. Klein, K. A. Watanabe, and J. J. Fox, <u>Ibid.</u>, <u>13</u>, 175 (1976).
- See also J. -L. Imbach, J.-L. Barascut, B. L. Kam, B. Bayner, C. Tamby, and
 C. Tapiero, <u>Ibid.</u>, <u>10</u>, 1069 (1973).

(Received August 18, 1976)